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J.  Phys. A: Math. Gen. 23 (1990) 1385-1403. Printed in the UK 

Solution of an initial-boundary value problem for coupled 
nonlinear waves 

J Leon and A Latifi 
Laboratoire de Physique Mathematiquet, Universitt des Sciences et Techniques du 
Languedoc, 34095 Montpellier Cedex 05, France 

Received 21 October 1989 

Abstract. We derive and study a hierarchy of nonlinear coupled evolution equations (among 
which is the coupled Korteveg-de Vries-Schrodinger equation) for which we prove that 
some mixed initial-boundary value problem is solvable. We give the method of solution 
together with the Backlund transformation and establish the infinite set of conserved 
densities. We finally discuss the applicability of such equations in plasma physics and 
hydrodynamics. 

1. Introduction 

We give the general method of solution of the system 

U,, + A * u  = qu 4 = d x ,  t )  U = u ( A ;  x, t )  
(1.1) 

4 , + 6 4 4 , - 4 , , , = - d i ~ ~ d A  d X  h d i  u ( A ; x , t ) u ( - h ; x , f ) + L ( h , t )  

( + ( A ,  t )  is an arbitrary distribution in A E C and dA A d i  = -2idAR dAI for A = AR+iAl) 
when the following initial-boundary values are prescribed 

q(x, t ) l r = o  = u ( A ;  x, 1 )  - Y - + X  d ( A ,  t )  exp[-ih(x-A’t)]. (1.2) 

In the reference frame (x, t ) ,  equation (1.1) represents the interaction of a 
wavepacket of high-frequency waves U( A ; x, t )  with the single, low-frequency wave 
q(x, t ) .  This equation is of general interest in physics and we discuss in section 5 some 
closely related equations appearing in plasma physics (coupling of a plasma wavepacket 
to acoustic waves) and hydrodynamics (interaction between long and short capillary- 
gravity waves). 

We prove here that the initial-boundary value problem (1.2) for the system (1.1) 
can be solved by the spectral transform theory [ l ]  within the framework of singular 
dispersion relations [2-71 (for qo(x) and d(A,  t )  in some spaces of functions). 

A different version of (1.1) in which one chooses for u(A, x, t )  the set of N bounded 
eigenfunctions ( A 2  = -A:) (therefore setting + ( A )  =Z;” S(A -iA,,)a,,, a,, some con- 
stant), has been studied by Mel’nikov [8]. There it has been shown that the initial 
value problem is integrable by means of the usual ‘Lax pair formalism’ involving a 
matrix spectral operator of rank N + 3  (the initial datum q(x,O) should of course 
belong to the set of potentials having N discrete eigenvalues). 
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Solving the initial-boundary value problem (1.2) for the system ( l . l ) ,  we will derive 
a set of relevant properties of the nonlinearily coupled waves. 

First of all, the system may exhibit (depending on the choice of the distribution 
p(A) )  the property of transparency to the waves u ( A ;  x, t )  coming from x =a. This 
property may also occur only for particular wavenumbers A, the system then acts as 
a filter. The same kind of behaviour was derived for the self-induced transparency 
equations [9] and are a direct consequence of the non-analyticity of the dispersion 
relation. 

Second, for the wavenumbers for which the system is ‘transparent’, the field q 
rapidly becomes a superposition of solitons, each of which is accompanied by ‘a piece’ 
of the wave U. More precisely, as t + X ,  q separates into N individual solitons and 
the wave U into N waves, each locked to its own soliton. Such a mutual selective 
trapping has been observed in a different context (Zakharov equations for a plasma) 
but still for a similar physical situation (coupling of H F / L F  waves) in [lo] where 
‘plasmon wavepackets ( U )  are shown to be nucleated in narrow density holes (4)’ .  

Finally, although the system has an infinite sequence of conservation laws, these 
do not lead in general to conserved quantities. The time asymptotics result in a transfer 
of the energy of the wave U to the physical system (see e.g. [9]). This phenomenon 
can be evaluated exactly because the time dependence of what would have been the 
conserved quantities can be explicitly integrated. 

In section 2 we establish the general hierarchy of nonlinear evolutions containing 
(1.1) as a special case and for which an initial-boundary value problem analogue to 
(1.2) is solvable. This hierarchy also contains as a special case the caviton equation 
[ 111 (a  dispersionless and partially linearised version of (1.1)) which is a model whereby 
solitons are used to represent the electronic density depressions (cavitons) in a plasma. 
The method used here is that of singular dispersion relations [2-71 applied to the 
Schrodinger eigenvalue problem. 

In section 3 we give the general method of solution and the one- and two-soliton 
solutions and discuss their dyanmics for some representative choices of the distribution 
p ( A )  in (1.1). 

Section 4 is devoted to deriving the infinite set of conservation laws and to the 
discussion of the conserved (or not) quantities. 

In  section 5 we consider the physical situations which lead to similar systems. We 
show in particular that a standard situation in plasma physics does not lead to an 
integrable system, but rather to what we call a parametrically nearly integrable system. 

Comment. Equation (1.1) (for q and A real) can also be thought of as a ‘practical 
tool’ for the nonlinear quantum mechanics of a free particle with wavefunction U and 
current density q. 

2. Singular general evolution equations related to the Schrodinger spectral problem 

We prove in this section that the system (1.1) is integrable by establishing the general 
class of nonlinear evolution equations associated with the Schrodinger spectral problem 
for non-analytic dispersion relations. A subclass of these nonlinear evolution equations, 
namely the class for which the dispersion relation vanishes at infinity, has already 
been obtained by Kaup [ 111 through standard (scattering) methods. 
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Because it has proved [3-191 to be very useful (at least to simplify the formalism), 
we proceed here through the a problem associated with the Schrodinger spectral 
problem. This approach has been adopted as a basic tool to investigate hierarchies of 
integrable evolutions with polynomial dispersion relations in [ 121. 

We choose here to write the problem for the scalar 4 in the form 

4(A) = 1 + 0 ( 1 / A )  I A I - . ~  (2.2) 

where r ( A )  is a given distribution in @. Our study is restricted to the case where 4(A) 
has only simple poles (6  functions in r )  or discontinuities on lines in the A plane. 

The solution of (2.1) obeying (2.2) is given by the solution of the following integral 
equation: 

which leads to the asymptotic series ( V n )  

A parametric (x, t )  dependence for 4 is obtained by requiring the 'simplest 
integrable' (x, t )  dependence for rib): 

a 
ax 
- r ( A ) = [ ~ ( A ) - a ( - A ) ] r ( A )  

In general a can be taken also as function of x and @ a function of t, but this 
unnecessarily complicates the formalism. We have made the choice of odd coefficients 
in (2.5) and (2.6) because any even (regular) part could be scaled off through a gauge 
transformation of 4 (if 4(A) solves (2.1) then so also does f ( A 2 ) $ ( A ) ) .  

The choice of a ( A )  fixes the principal spectral problem and for a = iA, the function 

$(A,  X, t ) =  & ( A ,  x, t )  e-'" (2.7) 

solves the Schrodinger spectral problem 

+,,, + ( A 2  - q(x,  t ) ) +  = 0 a ( A )  = i h  

with 

a 
ax 

q = -2i - 4"'(x, t ) .  (2.9) 

The proof of the above statement is given in [12] and is based on a comparison 
of the asymptotic expansion of $.yx + A'$ with that of $. In the present treatment it 
is essential to assume that r(A) is such that the integral equation (2.3) has a unique 
solution. 
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From (2.8) and ( l . l ) ,  $ and U solve the same scalar second-order differential 
equation. The function U is defined by its asymptotic behaviour (1.2) as x+m, while 
$ is determined by its behaviour in the complex A plane. Therefore, to relate CC, and 
U, one should find the behaviour of $ as x+m,  which is not possible in general (i.e. 
when the support of the distribution r ( A )  is not specified). However, this is possible 
at least when q(x,  t )  is piecewise continuous, bounded and vanishing 'fast enough' as 
1x1 + a, Vr. In that case we recall in the appendix that the support of r ( A )  is given by 
( A  = A R + i A l  and a ( A )  =iA): 

N 

e-*'"r(A) =p(A,)6-(Al)+2.rr C,,6(A - A , , )  Im A,, > 0 (2.10) 
n = l  

where the distribution 6 -  is defined by 

JlC dA A dif(A)6-(Al)  = dhRf(AR-iO) J:: 
or 

f (  A )a-(  A I )  = ;if( A R  - io) 6( A I). (2.11) 

By analogy with the language of the scattering theory for the Schrodinger operator, 
p ( A , )  will be called the reflection coefficient, C, the bound state coefficients and the 
set {A,, ; n = 1 . . . N ;  Im A,, > 0} the position of the bound states. Note that, due to 
(2.6), these quantities depend on t. We also have 

q(x,  t )  E R 3 R e  A,, = 0 n = l  . . .  N (2.12) 

and A: is a real negative eigenvalue of (2.8). 
In the class of a factor r given by (2.10), we show in the appendix that 

u(A, x, t )  = $ ( A ,  x, t)d(A, t )  e'*''. (2.13) 

Therefore, in this context, the integral equation (2.3) furnishes a solution (U, q )  of 
(1.1) through (2.9) and (2.13) if p(A) is chosen in such a way that the time evolution 
equation (2.6) implies the evolution equation (1.1). 

We now relate the dispersion relation P ( A )  to integrable evolution equations in 
(x, t )  space. The problem is to construct the so-called 'auxiliary spectral problem' or, 
more precisely, to evaluate the time dependence of 4 induced by (2.6). This is done 
here by examining the analytical properties of the spectral Wronskian of Jaulent and 
Manna [ 131: 

Here we choose for F ( A )  

a 
a t  F ( A  1 =- $ ( A )  - t [ P ( A )  -P(-A)I$(A) (2.15) 

where $ is given by the solution of (2.1) and (2.2) through (2.7) and @ ( A )  is the 
dispersion relation entering in (2.6). An elementary calculation gives 

a a 
2 i A -  b(A)=4(A)4(-A)-[p(A)-p(-A)] (2.16) 

dA a A  
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(in the course of this calculation one realises that the choice of the odd coefficient 
P(A)-P(-A) in (2.6) is essential). 

It is possible to solve (2.16) if the behaviour of P(A) on the boundary (i.e. IAl  + C O )  

is known. We choose 

(2.17) 

P s ( A )  = 0 ( 1 / A )  l A l + C O .  

The polynomial part of /3 is taken to be odd  because any even part vanishes either in 
(2.6) or (2.16). When the singular part PS(A) is absent, we recover the well known 
Korteveg-de Vries hierarchy of nonlinear evolution equations [ 11. 

We insert the expansion (2.4) and (2.17) in the expression (2.14) of b ( A )  to get the 
following behaviour: 

n 

p = o  
b ( A ) =  1 AZPb2,(x,  t ) + O ( l / A )  (AI+m. (2.18) 

Although they are not necessary for our  task, we write down the expressions for the 
bi in terms of P and 4 :  

Now equation (2.16) can be solved, and gives 

(2.20) 

(note that b ( A ) =  b ( - A )  through the involution l + - 1  in the integral). 
Alternatively, one can show that F defined in (2.15) can be expressed as 

F ( A )  = b ( A ) $ , ( A ) - f b . , ( h ) $ ( A )  (2.21) 

just by replacing F and b by their definitions in terms of + and by using the two 
following important relations: 

(2.22) 

(2.23) 

Finally, the nonlinear evolution equations are obtained, as usual, as the compatibil- 
ity condition between the ‘principal spectral problem’ (2.8) and the ‘auxiliary spectral 
problem’ (2.15), (2.21) with b(A, x, t )  given by (2.20). Identifying the coefficients of 
the different powers of A in the following expression of the compatability condition: 

’ a t  a x  2 
d’ 

we obtain the following recursive determination of the b, in (2.20): 

(2.24) 

(2.25) 

b2,, = yo ( a  constant) 
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and  the evolution equation 

(2.26) 

Finally the above evolution equation can be written in terms of the recursion 
operator 

(2.27) 

as the following hierarchy ( n  = 0, 1 ,  . . .): 

-*,,+s$==*$ 
where the distribution a ( A )  has been defined as 

i a  
a( h 1 = - T p (  A ) .  

7~ a/\ 
(2.29) 

The system (2.28) has to be completed with the following boundary conditions (see 
the appendix): 

(2.30) 

(2.31) 

The above system (2.28) constitutes the general evolution equation integrable by 
means of the spectral transform when the initial datum q(x,  0) is given together with 
the boundary (2.31). If the dispersion relation p is analytic, then g =  0 from (2.29) 
and the hierarchy reduces to the usual Korteveg-de Vries hierarchy [ 1 1 .  

The system ( 1 . 1 )  is obtained for the following choices: 

(2.32) 

(2.33) 

which fixes the distribution m ( h )  from the data of the boundary (1.2) and of the 
distribution p ( A )  (remember that U is related to I) through (2.13)). Consequently the 
dispersion relation p(A) is obtained from (2.17) and (2.29) and has the form (note 
that (2.19) implies that P r n  = bzn = yo) 

(2.34) 

If we choose n = 0 instead (no polynomial part in P(A)) and  

1 
P ( A ,  f )  = 2  6(A,) (2.35) 

we get the caviton equation [ 1 1 1 ,  i.e. 

(2.36) 
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3. General method of solution, solitons 

We now describe the method for solving the nonlinear coupled system (1.1) with the 
data 

40( x )  d ( A ,  t )  P ( A ,  t )  (3.1) 

and the asymptotic behaviours 

4o(x) + 0 X + l t C O  

u ( A ;  x, t ) + d ( A ,  t)exp[-iA(x-A2t)] x-03. 
(3.2) 

While we are particularly interested in the system ( l . l ) ,  it is, however, worth 
remarking that the following method of solution holds for any equation in the hierarchy 
(2.28) just by suitably modifying the expression (2.34) of the dispersion relation. 

The method of solution proceeds along the following lines: 

We now describe each of these steps. 

Step 1 .  This consists of solving, for 4, the Schrodinger direct spectral problem (2.8) 
and writing it  as a 2 problem to obtain r (A,  x, 0) from the solution $ ( A ,  x, 0). We recall 
for completeness the method in the appendix and simply note that we are then able 
to prove the relation (2.131, and also the structure (2.10) of r ( A ,  x, 0). 

Step 2. This reduces to computing the integral in (2.34) with given distribution p and 
function d. 

Step 3. The solution results readily from (2.6) once @ ( A ,  t )  is known, namely 

Step 4. Here we have the solution of the inverse Schrodinger spectral problem given 
by the Cauchy-Green integral equation (2.3), which, for $, is 

$ ( A ,  x, t)=exp(-ihx)+- 2,’T J ?+i $ ( - I ,  x, t ) r ( l ,  x, t )  exp[-i(l+A)x]. (3.5) 

We remark that from (2.5) with the choice (Y = ih, the x dependence of r is simply 

r ( A ,  x, t )  = ? (A,  t )  exp(2ihx). (3.6) 

Step 5. The solution q ( x ,  t )  is obtained directly from (2.9), where we remember that 
4‘”(x,  t )  is the coefficient of l/A in the Laurent series for 4 = $ elAr. 

Step 6. This is achieved by recalling (2.13): 

u ( A ,  x, t )  = $ ( A ,  x, t ) d ( h ,  1 )  exp(iA3t). (3.7) 
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In summary, the nonlinear initial-boundary value problem (1 .l) and (1.2) has been 
reduced to a series of linear steps whose essential difficulties are the solution of two 
Volterra integral equations (equations (A3) and (A4) for step 1) and of a Cauchy-Green 
integral equation (equation (3.3) for step 4). 

As usual in the spectral transform theory, the determination of r (A ,  x, 0) from 
q ( x ,  0) is not in general explicitly possible. A weaker statement of integrability consists 
of saying that the integral equation (2.3) furnishes a solution of our system for any 
given ‘good’ distribution r ( A ,  x, 0) and evolution equation (2.6). ‘Good’ means here 
‘such that the integral equation has a unique solution’. 

A second important remark is that in the evolution equation (2.6), r ( A )  is a 
distribution and /3 ( A  ) a non-analytic function; therefore some compatibility between 
the supports of r and /3 are required. In other words, not any distribution p(A, t )  (see 
(2.34)) is compatible through the evolution equation (2.6) with the structure (2.10) of 
the distribution r ( A ,  x, t ) .  From now on we shall choose ( A ,  = Im(A)) 

p(A, t ) = i v ( A ,  t ) S ( A i )  (3.8) 

where v ( A ,  t )  is a real-valued function. We shall see in section 5 that this very choice 
actually corresponds to the usual physical situations. To stay closer to physical 
problems and simplify the formalism a bit, we also choose 

d ( A ,  t ) = d * ( - A ,  t )  A € R  (3.9) 

so that we obtain from (2.8) and (2.13) 

u(-A, x, t )  = u*(A, X, t )  A ER. (3.10) 

The integrable system (1.1) then becomes 

(3.11) 

for which the related dispersion relation is 

(3.12) 

Moreover, we remark that, due to (3.10), the right-hand side of (3.11) would vanish 
if v ( A ,  t )  was an odd function of A. The odd part of v being meaningless, we choose 

(3.13) 

Now inserting the expression for /3 in the evolution equation (2.6), where we use 
the form (2.10) of r ( A ,  x, t ) ,  we identify the coefficients of S - ( A , ) ,  S ( A  - A n )  and 
S’( A - A , )  to obtain 

v ( A ,  t )  = v ( - A ,  t ) .  

a 
- A A , = O  (3.14) 
a t  

(3.15) 

(3.16) 
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To obtain the important formula (3.16), we use the Sokhotski theorem 

(3.17) 

where the slashed integral stands for the Cauchy principal value integral. It is worth 
remarking that, while the coefficient p (  A ) - p (-A ) in (2.6) is obviously an odd function 
of A, this is not the case for the quantity (P(A)-P(-A))S-(A,) appearing in the 
evolution of p(A,  t ) ,  A E R. 

From the quation (3.16) we obtain that the reflection coefficient p ( A ,  t )  ( A  E [w) will 
experience an exponential growth or damping, depending on the sign of 
j ‘ v ( A ,  t)ld(A, r)l’dt. In the case when it is positive any initial condition qo(x) will 
rapidly evolve into a pure N-soliton solution; this phenomenon is referred to as 
self-induced transparency. If vldI2 d t  is negative then p grows in time; in this case 
the reconstructed potential no longer belongs to the class of potentials for which the 
spectral transform is well defined [ 11. This requires a completely different study, such 
as that of Manakov [14] for the Zakharov-Shabat spectral problem. We will not 
consider this problem here. 

We can now construct some explicit solutions of the system (3.11) by choosing the 
distribution r(A, x, t )  such as to make the integral equation (2.3) explicitly solvable. 
This is the case, for instance, when only the discrete spectrum is present, i.e. when 

p ( A ,  t )  = 0 (3.18) 

and we obtain the N-soliton solution. For N = 1 and A ,  = ip, we get the solution 

u(A,x, t )=d(A,  t)exp(-iAx+iA3t) 

t( t )  = - In - = [(o) - 4p2t - a( t )  

A - ip cosh[ p(x  - t( t ) ) ]  

1 Cl 
2P 2P 

(3.19) 

(3.20) 

(3.21) 

(3.22) 

The only difference from the usual Kortveg-de Vries soliton comes from the term 
a(?) in the position t ( t )  of the soliton (note that to ensure the regularity of q, a has 
to be real). This means that the result of the coupling between q and U is to modify 
the soliton dynamics (when no radiation is present). In particular the soliton can be 
driven by varying in time the amplitude d ( A ,  t )  of the applied field p ( A ,  x, t ) .  

Following [l], the two-soliton solution can be written (A,  = ip, , j  = 1,2, p 2 > p l ) :  

with the following definitions: 

(3.23) 

(3.24) 

(3.25) 
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(3.26) 

In the above formulae, 6, ( j  = 1, 2 )  is given by (3.21) and (3.22) where p is to be 
replaced with p ) ,  so as for u,(A, x, t )  given by (3.20). 

It is well known that asymptotically in time q(x,  t )  separates into two single solitons 
with parameters p ,  and p z .  This is also the case for the wave u ( A ,  x, t ) .  Indeed we 
easily obtain from (3.24) that, for instance, 

(3.27) 

The other limits are obtained in the same way with the additional aid of the 
permutability theorem which can be stated here by saying that (3.24) is invariant under 
the exchange 1-2. 

This asymptotic property of mutual selective trapping holds for an N-soliton 
solution: each soliton component of q(x, 1 )  eventually travels locked to its own 
eigenmode. It is a general property of integrable systems of nonlinear coupled waves; 
it also appears in non-integrable systems like the Zakharov equation for plasmas where 
the ‘nucleation of the plasma wave’ was proved on the basis of numerical simulations 

u ( A ,  x, t )  + u 2 ( h ,  x, t )  for + -m with x - & fixed. 

[111. 

4. Conservation laws 

It is well known that an  integrable evolution equation has an  infinite sequence of 
conservation laws when the dispersion relation is polynomial in the spectral parameter 
A [ 13. Moreoever, when the field vanishes asymptotically the conservation laws give 
rise to infinitely many conserved quantities. 

The situation is different when the dispersion relation is not analytic everywhere, 
and  we will prove below that one can still write an  infinite sequence of conservation 
laws related to (3.11) (or  (1.1)). However, these d o  not in general lead to conserved 
quantities. This situation is similar to that in [9]. 

We shall not give many details and refer to [ l ]  for the explicit computation. The 
method consists of performing an  asymptotic expansion of the equation of conservation 

y ,  = 77, (4.1) 
in powers of the small parameter 

e = 1/2p (4.2) 
where p is the parameter of the Backlund transformation relating two solutions (9, U )  

and ( q ‘ ,  U’) of (3.11) or  (1.1): 

(4.3) q = - w ,  q‘  = - w‘ w :  + w ,  = -i( w ’ -  w)(4p + w ’ -  w) 

-i a 
ax  

U = - In[2pu(ip) + cu( -ip)] (4.4) u ‘ ( A )  =- [ u ( A ) u  - u , (A) l  A -ip 

where c is a real constant. 

4’ = p ( w ’ -  w )  

In (4.1) we set 

(4.5) 
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and compute 7. To this end it is necessary to prove the following essential property 
of the 'squared eigenfunction' u ( A ) u ( - A )  for (1.1) (or lu (h ) I2  for (3.11)) when U and 
U' are related by (4.4): 

u ( A ) u ( - . h ) .  (4.6) 

The above equation is proved by using (4.4) and the equation for U (and U') in (1.1). 
Then we may prove that (4.1) with (4.5) holds for the following choice of 7: 

when (U, q )  and (U', 9') are the solutions of (3.11) related by the Backlund transfor- 
mation. 

We shall use the above equation with the expansions 
x X 

y = y ' " & m  7 = 7 ( ' n i & m  

m =O m=O 

where the y ' " '  are obtained from (4.3) and (4.5) 

,=o 

To compute the 7"' it is necessary to know the expansion of U and of the integral 
on the right-hand side of (4.7). By definition, v satisfies 

1 
U, + U ?  = -w,  +7 

4E- 
(4.10) 

and therefore 

(4.11) 

We also have 

dh  h d h  X 

u ( A ) u ( - A ) ~ ( A ,  t )  = 1 
m=O 

"0' = 0 N " ' =  J 1- dh  Adh u ( h ) u ( - h ) p ( h ,  t )  

(4.12) 

= 0 N(2J'lJ = dh A d ~ ( - 4 h ' ) / u ( h ) u ( - A ) 1 ~ ( A ,  t ) .  

Equation (4.7) now furnishes the explicit values of ~ ' ' ~ l  and the evolution equation 
(1.1) has the following set of conservation laws: 

a a 
a t  
-'lmi=d,7"l m = 0,  1,. . . (4.13) 
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where the y(” are given in (4.9) and where 

(4.14) 

The first conservation law ( m  = 0 in (4.13)) is simply the evolution equation (1.1). 
Usually one simply integrates (4.13) on x E R to get, if q vanishes as x + im, an 

infinite sequence of conserved quantities. This is not the case here because u ( A ,  x, t )  

which appears in the 7‘”’) does not vanish as x +  f m .  Actually from (2.13) and (2.10) 
for A ER, we have 

(d(A) e-iAx X++m 
(4.15) 

where T(  A ) is the so-called transmission coefficient which can be explicitly constructed 
from the data of { p ( A ) ,  C,,, A,,, n = 1 . . . N }  [l] ,  with help of the unitarity relation 

(4.16) 

We may now integrate (4.13) when q vanishes as x +  im (note that all vi” vanish with 
q except U“) = 1): 

T ( h )  T(  - A )  + p ( A ) p (  - A )  = 1. 

- r + x  

y(*’+I’(x, t )  d x  = O .  

(4.17) 

(4.18) 

It can be shown that y:”+I’ can be expressed in terms of y::, j d m, and therefore 
(4.18) does not represent a constant of the motion. The right-hand side of (4.17) can 
be evaluated in terms of p ( A )  by using u ( A ) u ( - A ) =  d(A)d(-A)+(A)+(-A),  A E R :  

and it is clear that if the solution q is a pure N-soliton (i.e p = 0) then the integrals 
of the densities y”” are effectively constants of the motion. 

In physical situations, radiation is always present and the right-hand side of (4.19) 
does not vanish. 

5. Related physical models 

We wish to spend some time here deriving the basic equations in the physical situation 
of the coupling of plasma waves to acoustic waves. Doing this we have two aims: first 
we show that the equation governing this phenomenon is actually non-integrable and 
that this is due to the nonlinear coupling; secondly we explicitly obtain the integral 
term in the right-hand side of (1.1) (see (5 . lb )  below) by considering a plasma 
wavepacket instead of a single monochromatic wave. 
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Evolution problems resulting from the coupling of high-frequency waves (plasma 
waves) to low-frequency waves (electron-acoustic waves) in a plasma have been widely 
studied in recent years [ 151. On a physical level the main consequence of this coupling 
is to make possible an energy transfer from the long-wavelength domain to the 
dissipative short-wavelength range [ 161. This transfer is accompanied by depressions 
in the electronic density (cavitons) whose dynamics in one dimension are usually 
described in the context of soliton theory [ l l ,  17, 181. 

Many studies proceed by considering H F  and LF waves separately. On the one 
hand the long-wavelength stationary limit for solitary Langmuir waves appears to be 
described by the nonlinear Schrodinger equation [16]. On the other hand, the descrip- 
tion of the propagation of ion-acoustic waves of small amplitude in a cold-ion plasma 
is described by another integrable model, the Korteveg-de Vries equation [ 191. 

Although these models account for purely nonlinear dynamical effects (solitons), 
they do not describe the coupling of H F  waves to LF waves. 

A first step in finding an integrable model describing the nonlinear coupling has 
been achieved by Karpman [ 111 ,  who obtained an equation later generalised by Kaup 
[20]. This model is dispersionless and though it accounts well for the creation of 
cavitons through nonlinear energy transfer, it fails in the description of caviton 
dynamics (the system does not reduce to the Korteveg-de Vries equation for a vanishing 
coupling). 

A one-dimensional model for the propagation of a wavepacket of electrostatic 
(Langmuir) polarised waves in a uniform warm-electron-cold-ion plasma, including 
the nonlinear coupling, the nonlinear dynamical effects and dispersion, after rescaling, 
can be written in dimensionless variables 7 (slow time) and 6 (comoving frame at the 
speed of sound for the ions): 

( 5 . 1 ~ )  8,, + ( A  ’ - f r )  % = 0 
L/ r + =  

2r, +- 2rr, 4 rCEE = - - ‘ J )$)*dw. (5.16) 
a6 -x  

We shall see that 8( 6, 7, A )  represents the scaled slowly varying envelope component 
of the low-amplitude Langmuir wave of frequency w, and r is related to the fractional 
change in the plasma density. The coupling term on the right-hand side of (5 .16 )  
originates from the ponderomotive force and the integral comes from the fact that we 
consider a wavepacket (the integral is absent for a single wave). Finally, the parameter 
A is proportional to the wavenumber. 

First of all we remark that the system (5 .1 ) ,  while being similar to (3 .11 )  (set q = 3r, 
28, = a , ) ,  is not integrable due to the different sign in front of the third-order derivative. 

This is what we call a parametric (non-)integrability which may occur as soon as 
the ‘nonlinear evolution’ (5 .16 )  is coupled to the ‘spectral problem’ ( 5 . 1 ~ )  because 
then it is not possible to scale off all the constants. 

We believe that this new type of nearly integrable system plays a very important 
role in physics and needs to be studied further, but this will be the subject of future work. 

The derivation of (5 .1)  is standard [21-231 except for the fact that we consider a 
plasma wavepacket which modifies the expression of the pondermotive force. To make 
things clear we will now give necessary details about scales and dimensions. 

The plasma wave (or Langmuir or space-charge or electrostatic wave) has the 
following dispersion relation [24]: 

U’ = ui+3 Vt,k’ (5.2) 
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where V,, is the thermal electron velocity and  w p  stands for the plasma frequency (of 
the electrons) 

w ; = w ; ( l + q e )  (5.3) 

w ;  = 4.ire2n,/ m e ,  (5.4) 

The fractional change qe in the electron density of average value no is a function of 
space and  varies slowly in time. 

We consider a linearily polarised electrostatic ( B  = 0) field vector E = (0, 0, E ( z ,  t ) ) ,  
propagating along the z direction. The equation of propagation resulting from ( 5 . 2 )  is 

E ( z ,  t ) = - w ; ( l + q , ( z ,  T ) ) E ( z ,  t )  ( 5 . 5 )  

where the slow time T will be defined below in (5.8). 

ponent E ( q  t, T )  (we work throughout with the complex quantity E ) :  
Moreover, we consider E to be a wavepacket with slowly varying envelope com- 

+X 

dw E ( w ,  z, T) e-'"' (5 .6 )  

The small parameter in our problem is the ratio of the electron and ion masses, 
more precisely we set 

and  the (slow) scaled time is chosen to be 

(5.8) 
We shall work, moreover, in the comoving frame at the speed of sound for the ions 

5 ' 2  r = w " &  1. 

with the new space variable 

where A D  is the electron Debeye wavelength 

The equation obtained from (5.5) can be written 

(5.10) 

( 5 . 1 1 )  

( 5 . 1 2 )  

in which 8, r and the parameter A are defined from expansions in powers of E given 
in ( 5 . 2 7 )  below for 8 = 8"' and r = qb'), and for A ;  

7 ?  
w - - w o  

( y 2  -- - EA' 
W ;  

(5.13) 
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This means that E(@) has significant values only in a neighbourhood of w 0 .  Finally, 
the constant a is given by 

(5.14) 

which is precisely the thermal velocity of electrons. 

complete with some asymptotic boundary conditions, chosen here to be 
The equation ( 5 . 1 1 )  is to first order the differential equation ( 5 . l a ) ,  which we must 

%'(A, , $ , T I  exp(iA0 + a ( A )  as ,$+a. (5 .15 )  

The wavepacket profile a ( A )  is a real bounded function of A vanishing for [ A I  +CO. 

The above choice is natural since it implies that, far from the interaction region (i.e. 
for qe+ 0), the electrostatic field becomes a superposition of plane waves. Indeed, in 
the original variables and  for the chosen dimensions (see (5.25) below) the behaviour 
(5.15) is (for fixed 1 )  

In the following we will choose the complex A plane to be the sheet of the two-fold 
Riemann surface defined by the following determination of the square root: 

(5 .17 )  

with Re ( x ) ' " z O  for any quantity x, and ( -1) ' l2=i .  
In order to obtain the fluid equations for the plasma, we first evaluate the low- 

frequency effect of the high-frequency field E in (5.6) on the electrons (ponderomotive 
force). The first-order variation of the field E around the average position z is Sz aE/az 
where Sz is the displacement due  to the high-frequency electrostatic field: m,(Sz),, = eE. 

are considered 
separately) 

After integration, we write (the effects of the slow variation of 

(5.18) 

The resulting ponderomotive force is obtained by taking the real part of the low- 
frequency terms in Sz a E / a z ,  namely 

f p  = e Re[ Sz aE/az],, 

which allows us to write 

(5.19) 

(5.20) 

To now write the fluid equation we apply the change of variable (5.8) and  (5.10) 
in two steps 

and  we redefine the fields as 

(5.21) 

(5.22) 
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where (o is the electrostatic potential and ui the ion velocity. Using the fact that mi >> me 
the momentum transfer equation for the electrons [ 241 becomes 

and for the ions 

av(  av: apt 
- + U !  -= --, 
at ‘  ‘ az‘ a d  

The above system is completed with the continuity equation 

d‘li a - + y [ ( l + q i ) U : ] = o  
at ’  az 

and the Poisson equation 

(5.23) 

(5.24) 

(5.25) 

(5.26) 

Then after integration of (5.23) we go over to the variables (6 ,  7 )  and expand all 

&,p)+ e2(o(2)+0(E3) E t =  &8‘”+0(&2) (5.27) 

functions in powers of E as 

and analogously for and u i .  
The system (5.23)-(5.26) then gives at order E and e’: 

(5.28) 

(5.29) 

(5.30) 

(5.31) 

(5.32) 

(5.33) 

(5.34) 

(5.35) 

The first consequence is that we may denote by r the following equal quantities: 

(5.36) 

which satisfies (5.281, (5.29), (5.32) and (5.34). Among the remaining equations, the 
second-order factors si”, qL2), U:**’, and ( o ‘ 2 ’  can be eliminated to obtain the following 
evolution equation for r (denoting by if): 

+ q L 1 )  = q;ll = 1 )  - ‘ 1 ’  - ui 

(5.37) 

We have therefore derived the system (5.1) as a basic equation in the coupling of 
H F / L F  waves in a plasma. 
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Another physical situation leads to the same kind of equation as (5.11, namely the 
'nonlinear interaction between short and  long capillary-gravity waves' [25] (see 
equation (4.1) of [25]). In that case it may be possible that a different situation 
(different value of the Weber number W = ( p / T ) g h * ,  where p is the fluid density, T 
the surface tension and  h the uniform depth) would lead to the integrable evolution 
equation (1.1). 

Remark. If it is necessary to go to the variable defined in (5.12) and (5.13), one should 
first choose the expansion 

E ! =  &"7$P'+O(&)] 

instead of that of (5.27), and  then use in (5.37) 

d w  = [3&woA +O(E')] dA. 

Appendix. The Schrodinger scattering problem as a 3 problem 

For completeness, we recall here the known result [ 1,12,13] that the following scatter- 
ing problem: 

( $ + A 2 - p ( x )  ) f ' * ' ( A , x ) = O  

f ' * ' ( A ,  x)+e*'* '  x + + m  (A.2) 

can be written as the problem (2.1) and  (2.2) with r ( A )  given by (2.10). 
The system (A.l)  and  (A.2) is equivalent to the following integral equations: 

f ' - ' ( A ,  x)  = e-'""+L 1' dy  sin A ( x - y ) p ( y ) f ' - ' ( A , y )  
A -x 

= e - ' A X + G : f - ( ~ ,  . )  (A.3) 

If the real function p ( x )  satisfies 

then the Volterra equation (A.31, (A..4) implies thatf(-)(A, x) (respectivelyf"'(-A, x)) 
can be extended in the upper (respectively lower) half A plane. 

On the real axis we may compute 
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where we have defined 
. rtr 

, r -  
t ( A ) = L  J dy e- '"p(y)f '- ' (A,y).  

2iA --I 

Adding the quantity t ( A ) f ' - ' ( A ,  x) to both sides of equation (A.6), we get 

[ f ' - ' ( ~ ,  x ) ( l +  t )  - f ' + ' ( - ~ ,  x)] = p elAT + G ; [ ~ ( - ) ( A ,  . )( 1 + t )  - f ( + ) ( - ~ ,  )I ('4.9) 

which may be compared with 

p(A)f'+'(A, x) = p ( A )  e'"+p(A)G;f'+'(A, a )  

= p ( A )  elAX+ G;p(A)f'+'(A, . ) .  (A.lO) 

Assuming for simplicity that the homogeneous integral equation, with integral 
operator G;, has only the vanishing solution, comparing (A.9) with (A.lO) implies that 

( A . l l )  [1+ t ( A ) ] f ' - ' ( A ,  x)-f'+'(-A, x)=p(A)f '+ ' (A,  x). 

This equation can be written 

$ + ( A ,  x)  - $- (A ,  X )  = P ( A  )$ - ( -A ,  X)  (A.12) 

or 

for the function $ deflned by 

(A.13) 

(A.14) 

and for 6 -  defined in (2.11)t. The a equation (A.13) is equivalent to (2.1) with the 
definition (2.7) and the relation (2.10) between r(A,x) and p ( A )  (we have assumed 
no non-vanishing solution to the homogeneous equation, i.e. no bound states =%, = 0 
for all n ) .  

Finally the A behaviour (2.2) is a consequence of the definition of $ and of the 
integral equations (A.3) and (A.4). 

It remains to prove (2.13), which is obtained by comparing the behaviour (1.2) 

u(A, x)  + a ( A )  exp[-iA(x - A 2 t ) ]  x+oc  A E R  (A.15) 

with the behaviour of $(A,  x) for Im A < O  resulting from (A.2): 

$ ( A  - i O , x ) = f ' + ' ( - ~ ,  x)-*ee-'"' x-*W A E R .  (A.16) 

In this formalism the bound states are related to the N solutions of the homogeneous 
version of the integral equation (A.4), i.e. 

(A.17) 

+ Note that 1 + f ( A )  is the transmission coefficient T(A1 previously introduced in section 3.  
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where f y ’  is the solution of (A.4), holomorphic in the lower half A plane and where 
q n  (x) satisfies 

(A.18) 

It is then possible to show that the discrete part to be added to (A.13) is indeed given 
in general by (2.10). 
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